Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Comput Biol Med ; 146: 105598, 2022 07.
Article in English | MEDLINE | ID: covidwho-1982846

ABSTRACT

The critical event in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis is recognition of host cells by the virus, which is facilitated by protein-protein interaction (PPI) of viral Spike-Receptor Binding Domain (S-RBD) and Human Angiotensin Converting Enzyme 2-Receptor (hACE2-R). Thus, disrupting the interaction between S-RBD and hACE2-R is widely accepted as a primary strategy for managing COVID-19. The purpose of this study is to assess the ability of three steroidal lactones (SL) (4-Dehydrowithaferin A, Withaferin A, and Withalongolide A) derived from plants to disrupt the PPI of S-RBD and hACE2-R under two conditions (CON-I and CON-II) using in-silico methods. Under CON-I, 4-Dehydrowithaferin A destabilizing the interactions between S-RBD and hACE2-R, as indicated by an increase in binding energy (BE) from -1028.5 kJ/mol (control) to -896.12 kJ/mol 4-Dehydrowithaferin A exhibited a strong interaction with S-RBD GLY496 with a hydrogen bond occupancy (HBO) of 37.33%. Under CON-II, Withalongolide A was capable of disrupting all types of PPI, as evidenced by an increased BE from -913 kJ/mol (control) to -133.69 kJ/mol and an increased distance (>3.55 nm) between selected AAR combinations of S-RBD and hACE2-R. Withalongolide A formed a hydrogen bond with TYR453 (97%, HBO) of S-RBD, which is required for interaction with hACE2-R's HIS34. Our studies demonstrated that SL molecules have the potential to disrupt the S-RBD and hACE2-R interaction, thereby preventing SARS-CoV-2 from recognizing host cells. The SL molecules can be considered for additional in-vitro and in-vivo studies with this research evidence.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Humans , Lactones/pharmacology , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
2.
Sci Rep ; 10(1): 20584, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-947551

ABSTRACT

Plants are endowed with a large pool of structurally diverse small molecules known as secondary metabolites. The present study aims to virtually screen these plant secondary metabolites (PSM) for their possible anti-SARS-CoV-2 properties targeting four proteins/ enzymes which govern viral pathogenesis. Results of molecular docking with 4,704 ligands against four target proteins, and data analysis revealed a unique pattern of structurally similar PSM interacting with the target proteins. Among the top-ranked PSM which recorded lower binding energy (BE), > 50% were triterpenoids which interacted strongly with viral spike protein-receptor binding domain, > 32% molecules which showed better interaction with the active site of human transmembrane serine protease were belongs to flavonoids and their glycosides, > 16% of flavonol glycosides and > 16% anthocyanidins recorded lower BE against active site of viral main protease and > 13% flavonol glycoside strongly interacted with active site of viral RNA-dependent RNA polymerase. The primary concern about these PSM is their bioavailability. However, several PSM recorded higher bioavailability score and found fulfilling most of the drug-likeness characters as per Lipinski's rule (Coagulin K, Kamalachalcone C, Ginkgetin, Isoginkgetin, 3,3'-Biplumbagin, Chrysophanein, Aromoline, etc.). Natural occurrence, bio-transformation, bioavailability of selected PSM and their interaction with the target site of selected proteins were discussed in detail. Present study provides a platform for researchers to explore the possible use of selected PSM to prevent/ cure the COVID-19 by subjecting them for thorough in vitro and in vivo evaluation for the capabilities to interfering with the process of viral host cell recognition, entry and replication.


Subject(s)
Antiviral Agents/chemistry , COVID-19/virology , Computer Simulation , Plant Extracts/chemistry , Plants/metabolism , SARS-CoV-2/drug effects , Secondary Metabolism , Catalytic Domain , Coronavirus M Proteins/chemistry , Drug Evaluation, Preclinical/methods , Flavonoids/chemistry , Humans , Molecular Docking Simulation , Plant Extracts/pharmacology , Plants/chemistry , Protein Binding , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/enzymology , Serine Endopeptidases/chemistry , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL